Spectral analysis of integral-differential operators applied in linear antenna modeling

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)
10 Downloads (Pure)

Samenvatting

The current on a linear strip or wire solves an equation governed by a linear integro-differential operator that is the composition of the Helmholtz operator and an integral operator with a logarithmically singular displacement kernel. Investigating the spectral behaviour of this classical operator, we first consider the composition of the second-order differentiation operator and the integral operator with logarithmic displacement kernel. Employing methods of an earlier work by J. B. Reade, in particular the Weyl–Courant minimax principle and properties of the Chebyshev polynomials of the first and second kind, we derive index-dependent bounds for the ordered sequence of eigenvalues of this operator and specify their ranges of validity. Additionally, we derive bounds for the eigenvalues of the integral operator with logarithmic kernel. With slight modification our result extends to kernels that are the sum of the logarithmic displacement kernel and a real displacement kernel whose second derivative is square integrable. Employing this extension, we derive bounds for the eigenvalues of the integro-differential operator of a linear strip with the complex kernel replaced by its real part. Finally, for specific geometry and frequency settings, we present numerical results for the eigenvalues of the considered operators using Ritz's methods with respect to finite bases. Keywords: eigenvalue problems; integro-differential operators; logarithmic kernel; linear antennas
Originele taal-2Engels
Pagina's (van-tot)333-354
TijdschriftProceedings of the Edinburgh Mathematical Society. Series II
Volume55
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 2012

Vingerafdruk Duik in de onderzoeksthema's van 'Spectral analysis of integral-differential operators applied in linear antenna modeling'. Samen vormen ze een unieke vingerafdruk.

Citeer dit