Sparseness-Optimized Feature Importance

Isel Grau, Gonzalo Nápoles

Onderzoeksoutput: Bijdrage aan congresAbstractAcademic

14 Downloads (Pure)

Samenvatting

In this paper, we propose a model-agnostic post-hoc explanation procedure devoted to computing feature attribution. The proposed method, termed Sparseness-Optimized Feature Importance (SOFI), entails solving an optimization problem related to the sparseness of feature importance explanations. The intuition behind this property is that the model’s performance is severely affected after marginalizing the most important features while remaining largely unaffected after marginalizing the least important ones. Existing post-hoc feature attribution methods do not optimize this property directly but rather implement proxies to obtain this behavior. Numerical simulations using both structured (tabular) and unstructured (image) classification datasets show the superiority of our proposal compared with state-of-the-art feature attribution explanation methods. The implementation of the method is available on https://github.com/igraugar/sofi.
Originele taal-2Engels
Aantal pagina's3
StatusGepubliceerd - 19 nov. 2024
EvenementJoint International Scientific Conferences on AI and Machine Learning
BNAIC/BeNeLearn 2024
- Utrecht, Nederland
Duur: 18 nov. 202420 nov. 2024
https://bnaic2024.sites.uu.nl/

Congres

CongresJoint International Scientific Conferences on AI and Machine Learning
BNAIC/BeNeLearn 2024
Land/RegioNederland
StadUtrecht
Periode18/11/2420/11/24
Internet adres

Bibliografische nota

Encore abstract

Vingerafdruk

Duik in de onderzoeksthema's van 'Sparseness-Optimized Feature Importance'. Samen vormen ze een unieke vingerafdruk.
  • Sparseness-Optimized Feature Importance

    Grau, I. & Nápoles, G., 10 jul. 2024, Explainable Artificial Intelligence: Second World Conference, xAI 2024, Valletta, Malta, July 17–19, 2024, Proceedings, Part II. Longo, L., Lapuschkin, S. & Seifert, C. (uitgave). Cham: Springer, blz. 393-415 23 blz. (Communications in Computer and Information Science (CCIS); vol. 2154).

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    Open Access
    Bestand
    1 Citaat (Scopus)
    49 Downloads (Pure)

Citeer dit