Samenvatting
Sparse model estimation is a topic of high importance in modern data analysis due to the increasing availability of data sets with a large number of variables. Another common problem in applied statistics is the presence of outliers in the data. This paper combines robust regression and sparse model estimation. A robust and sparse estimator is introduced by adding an L 1 penalty on the coefficient estimates to the well-known least trimmed squares (LTS) estimator. The breakdown point of this sparse LTS estimator is derived, and a fast algorithm for its computation is proposed. In addition, the sparse LTS is applied to protein and gene expression data of the NCI-60 cancer cell panel. Both a simulation study and the real data application show that the sparse LTS has better prediction performance than its competitors in the presence of leverage points.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 226-248 |
Aantal pagina's | 23 |
Tijdschrift | The Annals of Applied Statistics |
Volume | 7 |
Nummer van het tijdschrift | 1 |
DOI's | |
Status | Gepubliceerd - 2013 |
Extern gepubliceerd | Ja |