Sparse iterative learning control with application to a wafer stage: achieving performance, resource efficiency, and task flexibility

T.A.E. Oomen, C.R. Rojas

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

12 Citaten (Scopus)
4 Downloads (Pure)

Samenvatting

Trial-varying disturbances are a key concern in Iterative Learning Control (ILC) and may lead to inefficient and expensive implementations and severe performance deterioration. The aim of this paper is to develop a general framework for optimization-based ILC that allows for enforcing additional structure, including sparsity. The proposed method enforces sparsity in a generalized setting through convex relaxations using ℓ1 norms. The proposed ILC framework is applied to the optimization of sampling sequences for resource efficient implementation, trial-varying disturbance attenuation, and basis function selection. The framework has a large potential in control applications such as mechatronics, as is confirmed through an application on a wafer stage.

Originele taal-2Engels
Pagina's (van-tot)134-147
Aantal pagina's14
TijdschriftMechatronics
Volume47
DOI's
StatusGepubliceerd - 1 nov 2017

Vingerafdruk Duik in de onderzoeksthema's van 'Sparse iterative learning control with application to a wafer stage: achieving performance, resource efficiency, and task flexibility'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit