Some properties of the solutions of wave equations

L.J.F. Broer, L.A. Peletier

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)

Samenvatting

Some properties of solutions of initial value problems and mixed initial-boundary value problems of a class of wave equations are discussed. Wave modes are defined and it is shown that for the given class of wave equations there is a one to one correspondence with the roots i (k) or k j () of the dispersion relation W(, k)=0. It is shown that solutions of initial value problems cannot consist of single wave modes if the initial values belong to W 2 1 (–, ); generally such solutions must contain all possible modes. Similar results hold for solutions of mixed initial-boundary value problems. It is found that such solutions are stable, even if some of the singularities of the functions k j () lie in the upper half of the plane. The implications of this result for the Kramers-Kronig relations are discussed.
Originele taal-2Engels
Pagina's (van-tot)138-161
TijdschriftApplied Scientific Research
Volume21
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 1969

Vingerafdruk

Duik in de onderzoeksthema's van 'Some properties of the solutions of wave equations'. Samen vormen ze een unieke vingerafdruk.

Citeer dit