Solving Singular Generalized Eigenvalue Problems. Part II: Projection and Augmentation

Michiel E. Hochstenbach (Corresponding author), Christian Mehl, Bor Plestenjak

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

4 Citaten (Scopus)
219 Downloads (Pure)

Samenvatting

Generalized eigenvalue problems involving a singular pencil may be very challenging to solve, both with respect to accuracy and efficiency. While Part I presented a rank-completing addition to a singular pencil, we now develop two alternative methods. The first technique is based on a projection onto subspaces with dimension equal to the normal rank of the pencil while the second approach exploits an augmented matrix pencil. The projection approach seems to be the most attractive version for generic singular pencils because of its efficiency, while the augmented pencil approach may be suitable for applications where a linear system with the augmented pencil can be solved efficiently.

Originele taal-2Engels
Pagina's (van-tot)1589-1618
Aantal pagina's30
TijdschriftSIAM Journal on Matrix Analysis and Applications
Volume44
Nummer van het tijdschrift4
DOI's
StatusGepubliceerd - dec. 2023

Financiering

FinanciersFinanciernummer
Nederlandse Organisatie voor Wetenschappelijk Onderzoek

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Solving Singular Generalized Eigenvalue Problems. Part II: Projection and Augmentation'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit