Solving limited memory influence diagrams

Denis Deratani Mauá, Cassio Polpo De Campos, Marco Zaffalon

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

27 Citaten (Scopus)
13 Downloads (Pure)

Samenvatting

We present a new algorithm for exactly solving decision making problems represented as influence diagrams. We do not require the usual assumptions of no forgetting and regularity; this allows us to solve problems with simultaneous decisions and limited information. The algorithm is empirically shown to outperform a state-of-the-art algorithm on randomly generated problems of up to 150 variables and 10 64 solutions. We show that these problems are NP-hard even if the underlying graph structure of the problem has low treewidth and the variables take on a bounded number of states, and that they admit no provably good approximation if variables can take on an arbitrary number of states.

Originele taal-2Engels
Pagina's (van-tot)97-140
Aantal pagina's44
TijdschriftJournal of Artificial Intelligence Research
Volume44
DOI's
StatusGepubliceerd - 1 mei 2012
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'Solving limited memory influence diagrams'. Samen vormen ze een unieke vingerafdruk.

Citeer dit