Solution-adaptive multigrid for steady gas dynamics problems

P.W. Hemker, B. Koren, W.M. Lioen, M. Nool, H.T.M. Maarel, van der

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademic

2 Downloads (Pure)

Samenvatting

This paper consists of two parts. In the first part we give a review of a good multigrid method for solving the steady Euler equations of gas dynamics on a locally refined mesh. The method is self-adaptive and makes use of unstructured grids that can be considered as parts of a nested sequence of structured grids. It is briefly described and applied to some steady Euler-flow problems. The method appears to be much more accurate and efficient than the corresponding multigrid method that applies global refinements only. In the second part of the paper, vectorisation of the code is treated. To enable this vectorisation, index arrays are introduced and added to the quad-tree type data-structure that is applied in the scalar case. Speed-up factors are given for the same test cases as considered in the first part of the paper. The results are most satisfactory.
Originele taal-2Engels
TitelProceedings of the 28th Computational Fluid Dynamics; 3-7 March 1997, Von Karman Institute for Fluid Dynamics Rhode-Saint Genese
RedacteurenH. Deconinck
Plaats van productieRhode-Saint-Genèse
UitgeverijVon Karman Institute for Fluid Dynamics
Pagina's1-25
StatusGepubliceerd - 1997

Publicatie series

NaamVKI LS
Volume1997-02
ISSN van geprinte versie0377-8312

Vingerafdruk Duik in de onderzoeksthema's van 'Solution-adaptive multigrid for steady gas dynamics problems'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Hemker, P. W., Koren, B., Lioen, W. M., Nool, M., & Maarel, van der, H. T. M. (1997). Solution-adaptive multigrid for steady gas dynamics problems. In H. Deconinck (editor), Proceedings of the 28th Computational Fluid Dynamics; 3-7 March 1997, Von Karman Institute for Fluid Dynamics Rhode-Saint Genese (blz. 1-25). (VKI LS; Vol. 1997-02). Von Karman Institute for Fluid Dynamics.