Sojourn times in a processor sharing queue with multiple vacations

U. Ayesta, O.J. Boxma, I.M. Verloop

Onderzoeksoutput: Boek/rapportRapportAcademic

53 Downloads (Pure)

Samenvatting

We study an M/G/1 processor sharing queue with multiple vacations. The server only takes a vacation when the system has become empty. If he finds the system still empty upon return, he takes another vacation, and so on. Successive vacations are identically distributed, with a general distribution. When the service requirements are exponentially distributed we determine the sojourn time distribution of an arbitrary customer. We also show how the same approach can be used to determine the sojourn time distribution in an M/M/1-PS queue of a polling model, under the following constraints: the service discipline at that queue is exhaustive service, the service discipline at each of the other queues satisfies a so-called branching property, and the arrival processes at the various queues are independent Poisson processes. For a general service requirement distribution we investigate both the vacation queue and the polling model, restricting ourselves to the mean sojourn time.
Originele taal-2Engels
Plaats van productieEindhoven
UitgeverijEurandom
Aantal pagina's18
StatusGepubliceerd - 2011

Publicatie series

NaamReport Eurandom
Volume2011023
ISSN van geprinte versie1389-2355

Vingerafdruk Duik in de onderzoeksthema's van 'Sojourn times in a processor sharing queue with multiple vacations'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Ayesta, U., Boxma, O. J., & Verloop, I. M. (2011). Sojourn times in a processor sharing queue with multiple vacations. (Report Eurandom; Vol. 2011023). Eurandom.