SocialBike: Quantified-Self Data as Social Cue in Physical Activity

Nan Yang, Gerbrand van Hout, Loe Feijs, Wei Chen, Jun Hu

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Citaten (Scopus)

Samenvatting

Quantified-self application is widely used in sports and health management; the type and amount of data that can be fed back to the user are growing rapidly. However, only a few studies discussed the social attributes of quantified-self data, especially in the context of cycling. In this study, we present “SocialBike,” a digital augmented bicycle that aims to increase cyclists’ motivation and social relatedness in physical activity by showing their quantified-self data to each other. To evaluate the concept through a rigorous control experiment, we built a cycling simulation system to simulate a realistic cycling experience with SocialBike. A within-subjects experiment was conducted through the cycling simulation system with 20 participants. Quantitative data were collected with the Intrinsic Motivation Inventory (IMI) and data recorded by the simulation system; qualitative data were collected through user interviews. The result showed that SocialBike increase cyclists’ intrinsic motivation, perceived competence, and social relatedness in physical activity.

Originele taal-2Engels
TitelIoT Technologies for HealthCare
Subtitel6th EAI International Conference, HealthyIoT 2019, Braga, Portugal, December 4–6, 2019, Proceedings
RedacteurenNuno M. Garcia, Ivan Miguel Pires, Rossitza Goleva
Plaats van productieCham
UitgeverijSpringer
Pagina's92-107
Aantal pagina's16
ISBN van elektronische versie978-3-030-42029-1
ISBN van geprinte versie978-3-030-42028-4
DOI's
StatusGepubliceerd - 2020
Evenement6th EAI International Conference on IoT Technologies for HealthCare, HealthyIoT 2019 - Braga, Portugal
Duur: 4 dec. 20196 dec. 2019

Publicatie series

NaamLecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (LNICST)
Volume314
ISSN van geprinte versie1867-8211
ISSN van elektronische versie1867-822X

Congres

Congres6th EAI International Conference on IoT Technologies for HealthCare, HealthyIoT 2019
Land/RegioPortugal
StadBraga
Periode4/12/196/12/19

Vingerafdruk

Duik in de onderzoeksthema's van 'SocialBike: Quantified-Self Data as Social Cue in Physical Activity'. Samen vormen ze een unieke vingerafdruk.

Citeer dit