Small time asymptotics of the entropy of the heat kernel on a Riemannian manifold

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademic

Samenvatting

We give an asymptotic expansion of the relative entropy between the heat kernel $q_Z(t,z,w)$ of a compact Riemannian manifold $Z$ and the normalized Riemannian volume for small values of $t$ and for a fixed element z∈Z. We prove that coefficients in the expansion can be expressed as universal polynomials in the components of the curvature tensor and its covariant derivatives at $z$, when they are expressed in terms of normal coordinates. We describe a method to compute the coefficients, and we use the method to compute the first three coefficients. The asymptotic expansion is necessary for an unsupervised machine-learning algorithm called the Diffusion Variational Autoencoder.
Originele taal-2Engels
Artikelnummer2209.11509
Aantal pagina's25
TijdschriftarXiv
Volume2022
DOI's
StatusGepubliceerd - 6 okt. 2022

Vingerafdruk

Duik in de onderzoeksthema's van 'Small time asymptotics of the entropy of the heat kernel on a Riemannian manifold'. Samen vormen ze een unieke vingerafdruk.

Citeer dit