Slightly subcritical hypercube percolation

Tim Hulshof (Corresponding author), Asaf Nachmias

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

7 Citaten (Scopus)
89 Downloads (Pure)

Samenvatting

We study bond percolation on the hypercube {0,1} m in the slightly subcritical regime where p = p c (1 − ε m ) and ε m = o(1) but ε m ≫ 2 −m/3 and study the clusters of largest volume and diameter. We establish that with high probability the largest component has cardinality Θ(ε m −2 log(ε m 3 2 m )), that the maximal diameter of all clusters is (1+o(1))ε m −1 log(ε m 3 2 m ), and that the maximal mixing time of all clusters is Θ(ε m −3 log 2m 3 2 m )). These results hold in different levels of generality, and in particular, some of the estimates hold for various classes of graphs such as high-dimensional tori, expanders of high degree and girth, products of complete graphs, and infinite lattices in high dimensions.

Originele taal-2Engels
Pagina's (van-tot)557-593
Aantal pagina's37
TijdschriftRandom Structures and Algorithms
Volume56
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 1 mrt. 2020

Financiering

FinanciersFinanciernummer
European Union’s Horizon Europe research and innovation programme676970
European Research Council
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Israel Science Foundation1207/15

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Slightly subcritical hypercube percolation'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit