Singularities of the matrix exponent of a Markov additive process with one-sided jumps

J. Ivanovs, O.J. Boxma, M.R.H. Mandjes

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

19 Citaten (Scopus)

Samenvatting

We analyze the number of zeros of det(F(a)), where F(a) is the matrix exponent of a Markov Additive Process (MAP) with one-sided jumps. The focus is on the number of zeros in the right half of the complex plane, where F(a) is analytic. In addition, we also consider the case of a MAP killed at an independent exponential time. The corresponding zeros can be seen as the roots of a generalized Cramér–Lundberg equation. We argue that our results are particularly useful in fluctuation theory for MAPs, which leads to numerous applications in queueing theory and finance.
Originele taal-2Engels
Pagina's (van-tot)1776-1794
TijdschriftStochastic Processes and their Applications
Volume120
Nummer van het tijdschrift9
DOI's
StatusGepubliceerd - 2010

Vingerafdruk

Duik in de onderzoeksthema's van 'Singularities of the matrix exponent of a Markov additive process with one-sided jumps'. Samen vormen ze een unieke vingerafdruk.

Citeer dit