Singularities of Poisson structures and Hamiltonian bifurcations

Onderzoeksoutput: Boek/rapportRapportAcademic

71 Downloads (Pure)

Samenvatting

Consider a Poisson structure on C8(R3,R) with bracket {, } and suppose that C is a Casimir function. Then {f, g} =<¿C, (¿g x ¿f) > is a possible Poisson structure. This confirms earlier observations concerning the Poisson structure for Hamiltonian systems that are reduced to a one degree of freedom system and generalizes the Lie-Poisson structure on the dual of a Lie algebra and the KKS-symplectic form. The fact that the governing reduced Poisson structure is described by one function makes it possible to find a representation, called the energy-momentum representation of the Poisson structure, describing both the singularity of the Poisson structure and the singularity of the energy-momentum mapping and hence the bifurcation of relative equilibria for such systems. It is shown that Hamiltonian Hopf bifurcations are directly related to singularities of Poisson structures of type sl(2).
Originele taal-2Engels
Plaats van productieEindhoven
UitgeverijTechnische Universiteit Eindhoven
Aantal pagina's15
StatusGepubliceerd - 2010

Publicatie series

NaamCASA-report
Volume1005
ISSN van geprinte versie0926-4507

Vingerafdruk

Duik in de onderzoeksthema's van 'Singularities of Poisson structures and Hamiltonian bifurcations'. Samen vormen ze een unieke vingerafdruk.

Citeer dit