Samenvatting
In most naturally occurring superconductors, electrons with opposite spins form Cooper pairs. This includes both conventional s-wave superconductors such as aluminium, as well as high-transition-temperature, d-wave superconductors. Materials with intrinsic p-wave superconductivity, hosting Cooper pairs made of equal-spin electrons, have not been conclusively identified, nor synthesized, despite promising progress1–3. Instead, engineered platforms where s-wave superconductors are brought into contact with magnetic materials have shown convincing signatures of equal-spin pairing4–6. Here we directly measure equal-spin pairing between spin-polarized quantum dots. This pairing is proximity-induced from an s-wave superconductor into a semiconducting nanowire with strong spin–orbit interaction. We demonstrate such pairing by showing that breaking a Cooper pair can result in two electrons with equal spin polarization. Our results demonstrate controllable detection of singlet and triplet pairing between the quantum dots. Achieving such triplet pairing in a sequence of quantum dots will be required for realizing an artificial Kitaev chain7–9.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 448-453 |
Aantal pagina's | 6 |
Tijdschrift | Nature |
Volume | 612 |
DOI's | |
Status | Gepubliceerd - 15 dec. 2022 |
Financiering
This work has been supported by the Dutch Organization for Scientific Research (NWO) and Microsoft Corporation Station Q. We also acknowledge a subsidy from Top Consortia for Knowledge and Innovation (TKl toeslag) and support from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 828948, project AndQC. We thank G. de Lange, S. Bergeret, V. Golovach, J. Robinson, M. Aprili, C. Quay, D. Loss and J. Klinovaja for discussions.
Financiers | Financiernummer |
---|---|
Microsoft | |
European Union’s Horizon Europe research and innovation programme | 828948 |
Nederlandse Organisatie voor Wetenschappelijk Onderzoek |