Samenvatting
We consider an engineer-to-order production system with unknown yield. We model the yield as a random variable which represents the percentage output obtained from one unit of production quantity. We develop a beta-regression model in which the mean value of the yield depends on the unique attributes of the engineer-to-order product. Assuming that the beta-regression parameters are unknown by the decision maker, we investigate the problem of identifying the optimal production quantity. Adopting a Bayesian approach for modeling the uncertainty in the beta-regression parameters, we use simulation to approximate the posterior distributions of these parameters. We further quantify the increase in the expected cost due to the so-called input uncertainty as a function of the size of the historical data set, the product attributes, and economic parameters. We also introduce a sampling-based algorithm that reduces the average increase in the expected cost due to input uncertainty.
Originele taal-2 | Engels |
---|---|
Titel | 2017 Winter Simulation Conference, WSC 2017 |
Plaats van productie | Piscataway |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 3275-3286 |
Aantal pagina's | 12 |
ISBN van elektronische versie | 9781538634288 |
ISBN van geprinte versie | 9781538634271 |
DOI's | |
Status | Gepubliceerd - 4 jan. 2018 |
Evenement | 2017 Winter Simulation Conference, WSC 2017 - Las Vegas, Verenigde Staten van Amerika Duur: 3 dec. 2017 → 6 dec. 2017 http://meetings2.informs.org/wordpress/wsc2017/ |
Congres
Congres | 2017 Winter Simulation Conference, WSC 2017 |
---|---|
Verkorte titel | WSC 2017 |
Land/Regio | Verenigde Staten van Amerika |
Stad | Las Vegas |
Periode | 3/12/17 → 6/12/17 |
Internet adres |