Similarity measuring between patient traces for clinical pathway analysis

Z. Huang, X. Lu, H. Duan

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademic

7 Citaten (Scopus)
237 Downloads (Pure)

Samenvatting

Clinical pathways leave traces, described as activity sequences with regard to a mixture of various latent treatment behaviors. Measuring similarities between patient traces can profitably be exploited further as a basis for providing insights into the pathways, and complementing existing techniques of clinical pathway analysis, which mainly focus on looking at aggregated data seen from an external perspective. In this paper, a probabilistic graphical model, i.e., Latent Dirichlet Allocation, is employed to discover latent treatment behaviors of patient traces for clinical pathways such that similarities of pairwise patient traces can be measured based on their underlying behavioral topical features. The presented method, as a basis for further tasks in clinical pathway analysis, are evaluated via a real-world data-set collected from a Chinese hospital.
Originele taal-2Engels
TitelProceedings of the 14th Conference on Artificial Intelligence in Medicine, AIME2013, 29 May - 1 June 2013, Murcia, Spain
RedacteurenN. Peek, R. Marin Morales, M. Peleg
Plaats van productieBerlin
UitgeverijSpringer
Pagina's268-272
ISBN van geprinte versie978-3-642-38326-7
DOI's
StatusGepubliceerd - 2013
Evenementconference; AIME2013 -
Duur: 1 jan. 2013 → …

Publicatie series

NaamLecture Notes in Computer Science
Volume7885

Congres

Congresconference; AIME2013
Periode1/01/13 → …
AnderAIME2013

Vingerafdruk

Duik in de onderzoeksthema's van 'Similarity measuring between patient traces for clinical pathway analysis'. Samen vormen ze een unieke vingerafdruk.

Citeer dit