sim2real: Cardiac MR Image Simulation-to-Real Translation via Unsupervised GANs

Sina Amirrajab (Corresponding author), Yasmina Al Khalil, Cristian Lorenz, Jurgen Weese, Josien Pluim, Marcel Breeuwer

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademic

53 Downloads (Pure)

Samenvatting

There has been considerable interest in the MR physics-based simulation of a database of virtual cardiac MR images for the development of deep-learning analysis networks. However, the employment of such a database is limited or shows suboptimal performance due to the realism gap, missing textures, and the simplified appearance of simulated images. In this work we 1) provide image simulation on virtual XCAT subjects with varying anatomies, and 2) propose sim2real translation network to improve image realism. Our usability experiments suggest that sim2real data exhibits a good potential to augment training data and boost the performance of a segmentation algorithm.
Originele taal-2Engels
Artikelnummer2208.04874
Aantal pagina's6
TijdschriftarXiv
Volume2022
DOI's
StatusGepubliceerd - 9 aug. 2022

Bibliografische nota

Accepted to Joint Annual Meeting ISMRM-ESMRMB & ISMRT 31st Annual Meeting 07-12 May 2022 | London, England, UK

Trefwoorden

  • eess.IV
  • cs.CV

Vingerafdruk

Duik in de onderzoeksthema's van 'sim2real: Cardiac MR Image Simulation-to-Real Translation via Unsupervised GANs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit