Samenvatting
Removal of frequency-modulated continuous wave (FMCW) interference by zeroing corrupted samples causes significant distortions and peak power losses in the range-Doppler map. Existing methods aim to diminish these distortions by utilizing data from one dimension to reconstruct the corrupted samples, which do not perform well when a large number of samples are interfered and have difficulty recovering weak target signals.In this paper, model-based deep learning interference mitigation algorithms, called ALISTA and ALFISTA, are presented that reduce these artifacts by leveraging the full integration gain using all uncorrupted fast-time and slow-time samples. Simulations with 50% corrupted samples show that target peak power loss and velocity peak-to-sidelobe ratio (VPSR) with a 20-layer ALFISTA improves with 5.5 and 9.6 dB compared to zeroing. Furthermore, significant improvements in precision and recall are observed, even when large amounts (50-80%) of samples are missing.
Originele taal-2 | Engels |
---|---|
Titel | ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Aantal pagina's | 5 |
ISBN van elektronische versie | 978-1-7281-6327-7 |
DOI's | |
Status | Gepubliceerd - 5 mei 2023 |
Evenement | ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) - Rhodes Island, Griekenland Duur: 4 jun. 2023 → 10 jun. 2023 |
Congres
Congres | ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
---|---|
Verkorte titel | ICASSP 2023 |
Land/Regio | Griekenland |
Stad | Rhodes Island |
Periode | 4/06/23 → 10/06/23 |
Trefwoorden
- Deep learning
- Acoustic distortion
- Signal processing algorithms
- Interference
- Signal reconstruction
- Radar signal processing
- Radar applications