Signal Reconstruction for FMCW Radar Interference Mitigation Using Deep Unfolding

J. Overdevest, A.G.C. Koppelaar, M.J.G. Bekooij, J. Youn, R.J.G. van Sloun

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

5 Citaten (Scopus)

Samenvatting

Removal of frequency-modulated continuous wave (FMCW) interference by zeroing corrupted samples causes significant distortions and peak power losses in the range-Doppler map. Existing methods aim to diminish these distortions by utilizing data from one dimension to reconstruct the corrupted samples, which do not perform well when a large number of samples are interfered and have difficulty recovering weak target signals.In this paper, model-based deep learning interference mitigation algorithms, called ALISTA and ALFISTA, are presented that reduce these artifacts by leveraging the full integration gain using all uncorrupted fast-time and slow-time samples. Simulations with 50% corrupted samples show that target peak power loss and velocity peak-to-sidelobe ratio (VPSR) with a 20-layer ALFISTA improves with 5.5 and 9.6 dB compared to zeroing. Furthermore, significant improvements in precision and recall are observed, even when large amounts (50-80%) of samples are missing.
Originele taal-2Engels
TitelICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
UitgeverijInstitute of Electrical and Electronics Engineers
Aantal pagina's5
ISBN van elektronische versie978-1-7281-6327-7
DOI's
StatusGepubliceerd - 5 mei 2023
EvenementICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) - Rhodes Island, Griekenland
Duur: 4 jun. 202310 jun. 2023

Congres

CongresICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Verkorte titelICASSP 2023
Land/RegioGriekenland
StadRhodes Island
Periode4/06/2310/06/23

Trefwoorden

  • Deep learning
  • Acoustic distortion
  • Signal processing algorithms
  • Interference
  • Signal reconstruction
  • Radar signal processing
  • Radar applications

Vingerafdruk

Duik in de onderzoeksthema's van 'Signal Reconstruction for FMCW Radar Interference Mitigation Using Deep Unfolding'. Samen vormen ze een unieke vingerafdruk.

Citeer dit