Sieve empirical likelihood and extensions of the generalized least squares

J. Zhang, I. Gijbels

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

29 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

The empirical likelihood cannot be used directly sometimes when an infinite dimensional parameter of interest is involved. To overcome this difficulty, the sieve empirical likelihoods are introduced in this paper. Based on the sieve empirical likelihoods, a unified procedure is developed for estimation of constrained parametric or non-parametric regression models with unspecified error distributions. It shows some interesting connections with certain extensions of the generalized least squares approach. A general asymptotic theory is provided. In the parametric regression setting it is shown that under certain regularity conditions the proposed estimators are asymptotically efficient even if the restriction functions are discontinuous. In the non-parametric regression setting the convergence rate of the maximum estimator based on the sieve empirical likelihood is given. In both settings, it is shown that the estimator is adaptive for the inhomogeneity of conditional error distributions with respect to predictor, especially for heteroscedasticity.
Originele taal-2Engels
Pagina's (van-tot)1-24
TijdschriftScandinavian Journal of Statistics
Volume30
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 2003

Vingerafdruk

Duik in de onderzoeksthema's van 'Sieve empirical likelihood and extensions of the generalized least squares'. Samen vormen ze een unieke vingerafdruk.

Citeer dit