Samenvatting
Two sets A, B ⊆ {0, 1}n form a Uniquely Decodable Code Pair (UDCP) if every pair a ∈ A, b ∈ B yields a distinct sum a+b, where the addition is over ℤn. We show that every UDCP A, B, with |A| = 2(1-ε)n and |B| = 2βn, satisfies equation. For sufficiently small ε, this bound significantly improves previous bounds by Urbanke and Li [Information Theory Workshop '98] and Ordentlich and Shayevitz [2014, arXiv:1412.8415], which upper bound β by 0.4921 and 0.4798, respectively, as ε approaches 0
Originele taal-2 | Engels |
---|---|
Titel | IEEE International Symposium on Information Theory, ISIT 2016, Barcelona, Spain, July 10-15, 2016 |
Plaats van productie | Piscataway |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 335-339 |
Aantal pagina's | 5 |
ISBN van elektronische versie | 978-1-5090-1806-2 |
ISBN van geprinte versie | 978-1-5090-1807-9 |
DOI's | |
Status | Gepubliceerd - 2016 |