Sharp asymptotics for stochastic dynamics with parallel updating rule

F.R. Nardi, C. Spitoni

Onderzoeksoutput: Boek/rapportRapportAcademic

6 Citaten (Scopus)
70 Downloads (Pure)

Samenvatting

In this paper we study the metastability problem for a stochastic dynamics with a parallel updating rule; in particular we consider a finite volume Probabilistic Cellular Automaton (PCA) in a small external field at low temperature regime. We are interested in the nucleation of the system, i.e., the typical excursion from the metastable phase (the configuration with all minuses) to the stable phase (the configuration with all pluses), triggered by the formation of a critical droplet. The main result of the paper is the sharp estimate of the nucleation time: we show that the nucleation time divided by its average converges to an exponential random variable and that the rate of the exponential random variable is an exponential function of the inverse temperature \beta times a prefactor that does not scale with \beta. Our approach combines geometric and potential theoretic arguments.
Originele taal-2Engels
Plaats van productieEindhoven
UitgeverijEurandom
Aantal pagina's22
StatusGepubliceerd - 2012

Publicatie series

NaamReport Eurandom
Volume2012001
ISSN van geprinte versie1389-2355

Vingerafdruk Duik in de onderzoeksthema's van 'Sharp asymptotics for stochastic dynamics with parallel updating rule'. Samen vormen ze een unieke vingerafdruk.

Citeer dit