Sensitivity analysis for finite Markov chains in discrete time

Gert De Cooman, Filip Hermans, Erik Quaeghebeur

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

6 Citaten (Scopus)

Samenvatting

When the initial and transition probabilities of a finite Markov chain in discrete time are not well known, we should perform a sensitivity analysis. This is done by considering as basic uncertainty models the so-called credal sets that these probabilities are known or believed to belong to, and by allowing the probabilities to vary over such sets. This leads to the definition of an imprecise Markov chain. We show that the time evolution of such a system can be studied very efficiently using so-called lower and upper expectations. We also study how the inferred credal set about the state at time n evolves as n → ∞: under quite unrestrictive conditions, it converges to a uniquely invariant credal set, regardless of the credal set given for the initial state. This leads to a non-trivial generalisation of the classical Perron-Frobenius Theorem to imprecise Markov chains.

Originele taal-2Engels
TitelProceedings of the 24th Conference on Uncertainty in Artificial Intelligence, UAI 2008
RedacteurenDavid A. McAllester, Petri Myllymäki
Pagina's129-136
Aantal pagina's8
DOI's
StatusGepubliceerd - 2008
Extern gepubliceerdJa
Evenement24th Conference on Uncertainty in Artificial Intelligence, UAI 2008 - Helsinki, Finland
Duur: 9 jul 200812 jul 2008

Congres

Congres24th Conference on Uncertainty in Artificial Intelligence, UAI 2008
Land/RegioFinland
StadHelsinki
Periode9/07/0812/07/08

Vingerafdruk

Duik in de onderzoeksthema's van 'Sensitivity analysis for finite Markov chains in discrete time'. Samen vormen ze een unieke vingerafdruk.

Citeer dit