Semi-automated Generation of Accurate Ground-Truth for 3D Object Detection

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

Visual algorithms for traffic surveillance systems typically locate and observe traffic movement by representing all traffic with 2D boxes. These 2D bounding boxes around vehicles are insufficient to generate accurate real-world locations. However, 3D annotation datasets are not available for training and evaluation of detection for traffic surveillance. Therefore, a new dataset for training the 3D detector is required. We propose and validate seven different annotation configurations for automated generation of 3D box annotations using only camera calibration, scene information (static vanishing points) and existing 2D annotations. The proposed novel Simple Box method does not require segmentation of vehicles and provides a more simple 3D box construction, which assumes a fixed predefined vehicle width and height. The existing KM3D CNN-based 3D detection model is adopted for traffic surveillance, which directly estimates 3D boxes around vehicles in the camera image, by training the detector on the newly generated dataset. The KM3D detector trained with the Simple Box configuration provides the best 3D object detection results, resulting in 51.9% AP3D on this data. The 3D object detector can estimate an accurate 3D box up to a distance of 125 m from the camera, with a median middle point mean error of only 0.5–1.0 m.

Originele taal-2Engels
TitelComputer Vision, Imaging and Computer Graphics Theory and Applications
Subtitel17th International Joint Conference, VISIGRAPP 2022, Virtual Event, February 6–8, 2022, Revised Selected Papers
RedacteurenA. Augusto de Sousa, Kurt Debattista, Alexis Paljic, Mounia Ziat, Christophe Hurter, Helen Purchase, Giovanni Maria Farinella, Petia Radeva, Kadi Bouatouch
Plaats van productieCham
UitgeverijSpringer
Pagina's21-50
Aantal pagina's30
ISBN van elektronische versie978-3-031-45725-8
ISBN van geprinte versie978-3-031-45724-1
DOI's
StatusGepubliceerd - 17 okt. 2023
Evenement17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications , VISIGRAPP 2022 - Virtual, Online
Duur: 6 feb. 20228 feb. 2022

Publicatie series

NaamCommunications in Computer and Information Science (CCIS)
Volume1815
ISSN van geprinte versie1865-0929
ISSN van elektronische versie1865-0937

Congres

Congres17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications , VISIGRAPP 2022
StadVirtual, Online
Periode6/02/228/02/22

Vingerafdruk

Duik in de onderzoeksthema's van 'Semi-automated Generation of Accurate Ground-Truth for 3D Object Detection'. Samen vormen ze een unieke vingerafdruk.

Citeer dit