Samenvatting
Complex networks emerging in natural and human-made systems tend to assume small-world structure. Is there a common mechanism underlying their self-organisation? Our computational simulations show that network diffusion (traffic flow or information transfer) steers network evolution towards emergence of complex network structures. The emergence is effectuated through adaptive rewiring: progressive adaptation of structure to use, creating short-cuts where network diffusion is intensive while annihilating underused connections. With adaptive rewiring as the engine of universal small-worldness, overall diffusion rate tunes the systems' adaptation, biasing local or global connectivity patterns. Whereas the former leads to modularity, the latter provides a preferential attachment regime. As the latter sets in, the resulting small-world structures undergo a critical shift from modular (decentralised) to centralised ones. At the transition point, network structure is hierarchical, balancing modularity and centrality - a characteristic feature found in, for instance, the human brain.
Originele taal-2 | Engels |
---|---|
Artikelnummer | 13158 |
Pagina's (van-tot) | 13158 |
Aantal pagina's | 9 |
Tijdschrift | Scientific Reports |
Volume | 7 |
Nummer van het tijdschrift | 1 |
DOI's | |
Status | Gepubliceerd - 13 okt. 2017 |