Self-attractive random polymers

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    12 Citaten (Scopus)
    129 Downloads (Pure)

    Samenvatting

    We consider a repulsion-attraction model for a random polymer of finite length in Zd. Its law is that of a finite simple random walk path in Zd receiving a penalty e-2ß for every self-intersection, and a reward e¿/d for every pair of neighboring monomers. The nonnegative parameters ß and ¿ measure the strength of repellence and attraction, respectively. We show that for $\gamma > \beta$ the attraction dominates the repulsion; that is, with high probability the polymer is contained in a finite box whose size is independent of the length of the polymer. For $\gamma <\beta$ the behavior is different. We give a lower bound for the rate at which the polymer extends in space. Indeed, we show that the probability for the polymer consisting of n monomers to be contained in a cube of side length e n1/d tends to zero as n tends to infinity. In dimension d = 1 we can carry out a finer analysis. Our main result is that for 0 <¿=ß -1/2 log 2 the end-to-end distance of the polymer grows linearly and a central limit theorem holds. It remains open to determine the behavior for ¿¿(ß - 1/2 log2, ß].
    Originele taal-2Engels
    Pagina's (van-tot)1079-1115
    TijdschriftThe Annals of Applied Probability
    Volume11
    Nummer van het tijdschrift4
    StatusGepubliceerd - 2001

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Self-attractive random polymers'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit