Seifert surfaces with minimal genus

J.J. Wijk, van, M. Garderen, van

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

Seifert surfaces are orientable surfaces, bounded by a mathematical knot. These surfaces have an intriguing shape and can be used to produce fascinating images and sculptures. Van Wijk and Cohen have introduced a method to generate images of these surfaces, based on braids, but their approach often led to surfaces that were too complex, i.e., the genus of the surface was too high. Here we show how minimal genus Seifert surfaces can be produced, using an extension of standard braids and an algorithm to find such surfaces.
Originele taal-2Engels
TitelProceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture (Enschede, The Netherlands, July 27-31, 2013)
RedacteurenG. Hart, R. Sarhangi
Plaats van productiePhoenix AZ
UitgeverijTessellations Publishing
Pagina's453-456
ISBN van geprinte versie978-1-938664-06-9
StatusGepubliceerd - 2013

Vingerafdruk Duik in de onderzoeksthema's van 'Seifert surfaces with minimal genus'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Wijk, van, J. J., & Garderen, van, M. (2013). Seifert surfaces with minimal genus. In G. Hart, & R. Sarhangi (editors), Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture (Enschede, The Netherlands, July 27-31, 2013) (blz. 453-456). Tessellations Publishing.