TY - JOUR
T1 - Segmentation of the left ventricle in cardiac MRI using a hierarchical extreme learning machine model
AU - Luo, Yang
AU - Yang, Benqiang
AU - Xu, Lisheng
AU - Hao, Liling
AU - Liu, Jun
AU - Yao, Yang
AU - Vosse, Frans van de
PY - 2018/10/1
Y1 - 2018/10/1
N2 - Segmentation of the left ventricle (LV) from cardiac magnetic resonance imaging (MRI) images is an essential step for calculation of clinical indices such as stroke volume, ejection fraction. In this paper, a new automatic LV segmentation method combines a Hierarchical Extreme Learning Machine (H-ELM) and a new location method is developed. An H-ELM can achieve more compact and meaningful feature representations and learn the segmentation task from the ground truth. A new automatic LV location method is integrated to improve the accuracy of classification and reduce the cost of segmentation. Experimental results (including 30 cases, 10 cases for training, 20 cases for testing) show that the mean absolute deviation of images segmented by our proposed method is about 67.9, 81.3 and 98.7% of those images segmented by the level set, the SVM and Hu’s method, respectively. The mean maximum absolute deviation of images segmented by our proposed method is about 63.5, 77.3 and 98.0% of those images segmented by the level set, the SVM and Hu’s method, respectively. The mean dice similarity coefficient of images segmented by our proposed method is about 13.7, 9.3 and 0.5% higher than that of those images segmented by the level set, the SVM and Hu’s method, respectively. The mean speed of our proposed method is about 38.3, 6.7 and 23.8 times faster than that of the level set, the SVM and Hu’s method, respectively. The standard deviation of our proposed method is the lowest among four methods. The results validate that our proposed method is efficient and satisfactory for the LV segmentation.
AB - Segmentation of the left ventricle (LV) from cardiac magnetic resonance imaging (MRI) images is an essential step for calculation of clinical indices such as stroke volume, ejection fraction. In this paper, a new automatic LV segmentation method combines a Hierarchical Extreme Learning Machine (H-ELM) and a new location method is developed. An H-ELM can achieve more compact and meaningful feature representations and learn the segmentation task from the ground truth. A new automatic LV location method is integrated to improve the accuracy of classification and reduce the cost of segmentation. Experimental results (including 30 cases, 10 cases for training, 20 cases for testing) show that the mean absolute deviation of images segmented by our proposed method is about 67.9, 81.3 and 98.7% of those images segmented by the level set, the SVM and Hu’s method, respectively. The mean maximum absolute deviation of images segmented by our proposed method is about 63.5, 77.3 and 98.0% of those images segmented by the level set, the SVM and Hu’s method, respectively. The mean dice similarity coefficient of images segmented by our proposed method is about 13.7, 9.3 and 0.5% higher than that of those images segmented by the level set, the SVM and Hu’s method, respectively. The mean speed of our proposed method is about 38.3, 6.7 and 23.8 times faster than that of the level set, the SVM and Hu’s method, respectively. The standard deviation of our proposed method is the lowest among four methods. The results validate that our proposed method is efficient and satisfactory for the LV segmentation.
KW - Hierarchical extreme learning machine
KW - Image segmentation
KW - Left ventricle
KW - Magnetic resonance imaging
UR - http://www.scopus.com/inward/record.url?scp=85052869025&partnerID=8YFLogxK
U2 - 10.1007/s13042-017-0678-4
DO - 10.1007/s13042-017-0678-4
M3 - Article
AN - SCOPUS:85052869025
SN - 1868-8071
VL - 9
SP - 1741
EP - 1751
JO - International Journal of Machine Learning and Cybernetics
JF - International Journal of Machine Learning and Cybernetics
IS - 10
ER -