SciModeler: A Metamodel and Graph Database for Consolidating Scientific Knowledge by Linking Empirical Data with Theoretical Constructs

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

67 Downloads (Pure)

Samenvatting

An important purpose of science is building and advancing general theories from empirical data. This process is complicated by the immense volume of empirical data and scientific theories in some fields. Particularly, the systematic linking of empirical data with theoretical constructs is currently lacking. Within this article, we propose a prototypical solution (i.e., a metamodel and graph database) for consolidating scientific knowledge by linking theoretical constructs with empirical data. We conducted a case study within the field of health behavior change where the system is used to record three scientific theories and three empirical studies as well as their mutual links. Finally, we demonstrate how the system can be queried to accumulate knowledge.
Originele taal-2Engels
TitelProceedings of the 9th International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD
RedacteurenSlimane Hammoudi, Luis Ferreira Pires, Edwin Seidewitz, Richard Soley
UitgeverijSciTePress Digital Library
Pagina's314-321
Aantal pagina's8
ISBN van elektronische versie978-989-758-487-9
DOI's
StatusGepubliceerd - 2021
Evenement9th International Conference on Model-Driven Engineering and Software Development - Online streaming, Vienna, Oostenrijk
Duur: 8 feb. 202110 feb. 2021

Congres

Congres9th International Conference on Model-Driven Engineering and Software Development
Land/RegioOostenrijk
StadVienna
Periode8/02/2110/02/21

Vingerafdruk

Duik in de onderzoeksthema's van 'SciModeler: A Metamodel and Graph Database for Consolidating Scientific Knowledge by Linking Empirical Data with Theoretical Constructs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit