TY - JOUR
T1 - Scenario-based approach for flexible resource loading under uncertainty
AU - Wullink, G.
AU - Gademann, A.J.R.M.
AU - Hans, E.W.
AU - Harten, van, A.
PY - 2004
Y1 - 2004
N2 - Order acceptance decisions in manufacture-to-order environments are often made based on incomplete or uncertain information. To quote reliable due dates in order processing, manage resource capacity adequately and take into account uncertainty, the paper presents and analyses models and tools for more robust resource loading. We refer to the problem as flexible resource loading under uncertainty. We propose a scenario-based solution approach that can deal with a wide range of uncertainty types. The approach is based on an MILP to find a plan with minimum expected costs over all relevant scenarios. To solve this MILP, we propose an exact branch-and-price algorithm. Further, we propose a much faster improvement heuristic based on an LP (linear programming) approximation. A disadvantage of the scenario-based MILP, is that a large number of scenarios may make the model intractable. We therefore propose an approximate approach that uses the aforementioned solution techniques and only a sample of all scenarios. Computational experiments show that, especially for instances with sufficient slack, solutions obtained with deterministic techniques that only use the expected scenario can be significantly improved with respect to their expected costs (i.e. robustness). We also show that for large instances, our heuristics outperform the exact approach given a maximum computation time as a stopping criterion. Moreover, it turns out that using a small sample of selected scenarios generally yields better results than using all scenarios.
AB - Order acceptance decisions in manufacture-to-order environments are often made based on incomplete or uncertain information. To quote reliable due dates in order processing, manage resource capacity adequately and take into account uncertainty, the paper presents and analyses models and tools for more robust resource loading. We refer to the problem as flexible resource loading under uncertainty. We propose a scenario-based solution approach that can deal with a wide range of uncertainty types. The approach is based on an MILP to find a plan with minimum expected costs over all relevant scenarios. To solve this MILP, we propose an exact branch-and-price algorithm. Further, we propose a much faster improvement heuristic based on an LP (linear programming) approximation. A disadvantage of the scenario-based MILP, is that a large number of scenarios may make the model intractable. We therefore propose an approximate approach that uses the aforementioned solution techniques and only a sample of all scenarios. Computational experiments show that, especially for instances with sufficient slack, solutions obtained with deterministic techniques that only use the expected scenario can be significantly improved with respect to their expected costs (i.e. robustness). We also show that for large instances, our heuristics outperform the exact approach given a maximum computation time as a stopping criterion. Moreover, it turns out that using a small sample of selected scenarios generally yields better results than using all scenarios.
U2 - 10.1080/002075410001733887
DO - 10.1080/002075410001733887
M3 - Article
SN - 0020-7543
VL - 42
SP - 5079
EP - 5098
JO - International Journal of Production Research
JF - International Journal of Production Research
IS - 24
ER -