Scaling limits via excursion theory : interplay between Crump-Mode-Jagers branching processes and processor-sharing queues

A. Lambert, F. Simatos, B. Zwart

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

11 Citaten (Scopus)
88 Downloads (Pure)

Samenvatting

We study the convergence of the M/G/1 processor-sharing, queue length process in the heavy traffic regime, in the finite variance case. To do so, we combine results pertaining to Lévy processes, branching processes and queuing theory. These results yield the convergence of long excursions of the queue length processes, toward excursions obtained from those of some reflected Brownian motion with drift, after taking the image of their local time process by the Lamperti transformation. We also show, via excursion theoretic arguments, that this entails the convergence of the entire processes to some (other) reflected Brownian motion with drift. Along the way, we prove various invariance principles for homogeneous, binary Crump–Mode–Jagers processes. In the last section we discuss potential implications of the state space collapse property, well known in the queuing literature, to branching processes. Keywords: Scaling limit; excursion theory; processor-sharing queue; local time process of Lévy processes; Crump–Mode–Jagers branching processes
Originele taal-2Engels
Pagina's (van-tot)2357-2381
Aantal pagina's25
TijdschriftThe Annals of Applied Probability
Volume23
Nummer van het tijdschrift6
DOI's
StatusGepubliceerd - 2013

Vingerafdruk Duik in de onderzoeksthema's van 'Scaling limits via excursion theory : interplay between Crump-Mode-Jagers branching processes and processor-sharing queues'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit