Scale-free network clustering in hyperbolic and other random graphs

Clara Stegehuis (Corresponding author), Remco van der Hofstad, Johan S.H. van Leeuwaarden

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    3 Citaten (Scopus)
    1 Downloads (Pure)


    Random graphs with power-law degrees can model scale-free networks as sparse topologies with strong degree heterogeneity. Mathematical analysis of such random graphs proved successful in explaining scale-free network properties such as resilience, navigability and small distances. We introduce a variational principle to explain how vertices tend to cluster in triangles as a function of their degrees. We apply the variational principle to the hyperbolic model that quickly gains popularity as a model for scale-free networks with latent geometries and clustering. We show that clustering in the hyperbolic model is non-vanishing and self-averaging, so that a single random graph sample is a good representation in the large-network limit. We also demonstrate the variational principle for some classical random graphs including the preferential attachment model and the configuration model.

    Originele taal-2Engels
    Aantal pagina's20
    TijdschriftJournal of Physics A: Mathematical and Theoretical
    Nummer van het tijdschrift29
    StatusGepubliceerd - 24 jun 2019

    Vingerafdruk Duik in de onderzoeksthema's van 'Scale-free network clustering in hyperbolic and other random graphs'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit