Sampled-data based state and parameter estimation for state-affine systems with uncertain output equation

Tarek Ahmed-Ali, Koen Tiels, Maarten Schoukens, Fouad Giri

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelAcademicpeer review

Uittreksel

The problem of sampled-data observer design is addressed for a class of state- and parameter-affine nonlinear systems. The main novelty in this class lies in the fact that the unknown parameters enter the output equation and the associated regressor is nonlinear in the output. Wiener systems belong to this class. The difficulty with this class of systems comes from the fact that output measurements are only available at sampling times causing the loss of the parameter-affine nature of the model (except at the sampling instants). This makes existing adaptive observers inapplicable to this class of systems. In this paper, a new sampled-data adaptive observer is designed for these systems and shown to be exponentially convergent under specific persistent excitation (PE) conditions that ensure system observability and identifiability. The new observer involves an inter-sample output predictor that is different from those in existing observers and features continuous trajectories of the state and parameter estimates.

TaalEngels
Pagina's491-496
Aantal pagina's6
TijdschriftIFAC-PapersOnLine
Volume51
Nummer van het tijdschrift15
DOI's
StatusGepubliceerd - 8 okt 2018
Evenement18th IFAC Symposium on System Identification (SYSID 2018) - Stockholm, Zweden
Duur: 9 jul 201811 jul 2018

Vingerafdruk

State estimation
Parameter estimation
Sampling
Observability
Nonlinear systems
Trajectories

Trefwoorden

    Citeer dit

    @article{8caf46471e2940c68c257c78e12a992f,
    title = "Sampled-data based state and parameter estimation for state-affine systems with uncertain output equation",
    abstract = "The problem of sampled-data observer design is addressed for a class of state- and parameter-affine nonlinear systems. The main novelty in this class lies in the fact that the unknown parameters enter the output equation and the associated regressor is nonlinear in the output. Wiener systems belong to this class. The difficulty with this class of systems comes from the fact that output measurements are only available at sampling times causing the loss of the parameter-affine nature of the model (except at the sampling instants). This makes existing adaptive observers inapplicable to this class of systems. In this paper, a new sampled-data adaptive observer is designed for these systems and shown to be exponentially convergent under specific persistent excitation (PE) conditions that ensure system observability and identifiability. The new observer involves an inter-sample output predictor that is different from those in existing observers and features continuous trajectories of the state and parameter estimates.",
    keywords = "Adaptive observer, Sampled-data nonlinear systems",
    author = "Tarek Ahmed-Ali and Koen Tiels and Maarten Schoukens and Fouad Giri",
    year = "2018",
    month = "10",
    day = "8",
    doi = "10.1016/j.ifacol.2018.09.193",
    language = "English",
    volume = "51",
    pages = "491--496",
    journal = "IFAC-PapersOnLine",
    issn = "2405-8963",
    publisher = "Elsevier",
    number = "15",

    }

    Sampled-data based state and parameter estimation for state-affine systems with uncertain output equation. / Ahmed-Ali, Tarek; Tiels, Koen; Schoukens, Maarten; Giri, Fouad.

    In: IFAC-PapersOnLine, Vol. 51, Nr. 15, 08.10.2018, blz. 491-496.

    Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelAcademicpeer review

    TY - JOUR

    T1 - Sampled-data based state and parameter estimation for state-affine systems with uncertain output equation

    AU - Ahmed-Ali,Tarek

    AU - Tiels,Koen

    AU - Schoukens,Maarten

    AU - Giri,Fouad

    PY - 2018/10/8

    Y1 - 2018/10/8

    N2 - The problem of sampled-data observer design is addressed for a class of state- and parameter-affine nonlinear systems. The main novelty in this class lies in the fact that the unknown parameters enter the output equation and the associated regressor is nonlinear in the output. Wiener systems belong to this class. The difficulty with this class of systems comes from the fact that output measurements are only available at sampling times causing the loss of the parameter-affine nature of the model (except at the sampling instants). This makes existing adaptive observers inapplicable to this class of systems. In this paper, a new sampled-data adaptive observer is designed for these systems and shown to be exponentially convergent under specific persistent excitation (PE) conditions that ensure system observability and identifiability. The new observer involves an inter-sample output predictor that is different from those in existing observers and features continuous trajectories of the state and parameter estimates.

    AB - The problem of sampled-data observer design is addressed for a class of state- and parameter-affine nonlinear systems. The main novelty in this class lies in the fact that the unknown parameters enter the output equation and the associated regressor is nonlinear in the output. Wiener systems belong to this class. The difficulty with this class of systems comes from the fact that output measurements are only available at sampling times causing the loss of the parameter-affine nature of the model (except at the sampling instants). This makes existing adaptive observers inapplicable to this class of systems. In this paper, a new sampled-data adaptive observer is designed for these systems and shown to be exponentially convergent under specific persistent excitation (PE) conditions that ensure system observability and identifiability. The new observer involves an inter-sample output predictor that is different from those in existing observers and features continuous trajectories of the state and parameter estimates.

    KW - Adaptive observer

    KW - Sampled-data nonlinear systems

    UR - http://www.scopus.com/inward/record.url?scp=85054395776&partnerID=8YFLogxK

    U2 - 10.1016/j.ifacol.2018.09.193

    DO - 10.1016/j.ifacol.2018.09.193

    M3 - Conference article

    VL - 51

    SP - 491

    EP - 496

    JO - IFAC-PapersOnLine

    T2 - IFAC-PapersOnLine

    JF - IFAC-PapersOnLine

    SN - 2405-8963

    IS - 15

    ER -