Sample path large deviations for levy processes and random walks with regularly varying increments

Chang Han Rhee, Jose Blanchet, Bert Zwart

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

13 Citaten (Scopus)
26 Downloads (Pure)

Samenvatting

Let X be a Levy process with regularly varying Levy measure ν. We obtain sample-path large deviations for scaled processes. Xn(t) X(nt)/n and obtain a similar result for random walks with regularly varying increments. Our results yield detailed asymptotic estimates in scenarios where multiple big jumps in the increment are required to make a rare event happen; we illustrate this through detailed conditional limit theorems. In addition, we investigate connections with the classical large deviations framework. In that setting, we show that a weak large deviation principle (with logarithmic speed) holds, but a full large deviation principle does not hold.

Originele taal-2Engels
Pagina's (van-tot)3551-3605
Aantal pagina's55
TijdschriftThe Annals of Probability
Volume47
Nummer van het tijdschrift6
DOI's
StatusGepubliceerd - 2019

Bibliografische nota

Publisher Copyright:
© Institute of Mathematical Statistics, 2019.

Vingerafdruk

Duik in de onderzoeksthema's van 'Sample path large deviations for levy processes and random walks with regularly varying increments'. Samen vormen ze een unieke vingerafdruk.

Citeer dit