TY - JOUR
T1 - Salt scaling resistance of pre-cracked ultra-high performance concrete with the coupling of salt freeze-thaw and wet-dry cycles
AU - Deng, Qian
AU - Wang, Zixiao
AU - Li, Shaohua
AU - Yu, Qingliang
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2024/2
Y1 - 2024/2
N2 - Wet-dry cycles and cracking are unavoidable problems of concrete structures and reduce durability by enhancing the penetration of harmful ions and water, which may have a synergistic adverse influence with severe surface damage caused by salt freeze-thaw cycles. This study aims to investigate the salt scaling resistance of ultra-high performance concrete (UHPC) under multiple harsh environments including wet-dry cycles and pre-cracking. The relationship between workability, absorption behavior, and scaling resistance with fiber content increases is assessed. Mass loss, chloride binding behavior, pore structure, and pore morphology are analyzed to describe the influences of pre-cracking and wet-dry cycles. The results reveal that the workability of fresh concrete and the distribution of steel fibers are the key factors in determining the salt scaling resistance of UHPC. Pre-cracking and wet-dry cycles inhibit the rapid scaling damage of UHPC by accelerating chloride accumulation, which reduces the icing pressure of pore liquid and refining the micropores (<200 nm) capable of remaining non-frozen at low temperatures through the chemical binding of chloride. However, the combined effect of pre-cracking and wet-dry cycles can lead to the corrosion of internal steel fibers and more scaling damage, and the crack width should not be greater than 0.1 mm.
AB - Wet-dry cycles and cracking are unavoidable problems of concrete structures and reduce durability by enhancing the penetration of harmful ions and water, which may have a synergistic adverse influence with severe surface damage caused by salt freeze-thaw cycles. This study aims to investigate the salt scaling resistance of ultra-high performance concrete (UHPC) under multiple harsh environments including wet-dry cycles and pre-cracking. The relationship between workability, absorption behavior, and scaling resistance with fiber content increases is assessed. Mass loss, chloride binding behavior, pore structure, and pore morphology are analyzed to describe the influences of pre-cracking and wet-dry cycles. The results reveal that the workability of fresh concrete and the distribution of steel fibers are the key factors in determining the salt scaling resistance of UHPC. Pre-cracking and wet-dry cycles inhibit the rapid scaling damage of UHPC by accelerating chloride accumulation, which reduces the icing pressure of pore liquid and refining the micropores (<200 nm) capable of remaining non-frozen at low temperatures through the chemical binding of chloride. However, the combined effect of pre-cracking and wet-dry cycles can lead to the corrosion of internal steel fibers and more scaling damage, and the crack width should not be greater than 0.1 mm.
KW - Cracks
KW - Salt freeze-thaw cycles
KW - Steel fiber content
KW - Ultra-high performance concrete
KW - Wet-dry cycles
UR - http://www.scopus.com/inward/record.url?scp=85179122976&partnerID=8YFLogxK
U2 - 10.1016/j.cemconcomp.2023.105396
DO - 10.1016/j.cemconcomp.2023.105396
M3 - Article
AN - SCOPUS:85179122976
SN - 0958-9465
VL - 146
JO - Cement and Concrete Composites
JF - Cement and Concrete Composites
M1 - 105396
ER -