Salient object detection employing a local tree-structured low-rank representation and foreground consistency

Qiang Zhang, Zhen Huo, Yi Liu, Yunhui Pan, Caifeng Shan, Jungong Han (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

22 Citaten (Scopus)

Samenvatting

We propose a local tree-structured low-rank representation (TS-LRR) model to detect salient objects under the complicated background with diverse local regions, which is problematic for most low-rank matrix recovery (LRMR) based salient object detection methods. We first impose a local tree-structured low-rank constraint on the representation coefficients matrix to capture the complicated background. Specifically, a primitive background dictionary is constructed for TS-LRR to promote its background representation ability, and thus enlarge the gap between the salient objects and the background. We then impose a group-sparsity constraint on the sparse error matrix with the intention to ensure the saliency consistency among patches with similar features. At last, a foreground consistency is introduced to identically highlight the distinctive regions within the salient object. Experimental results on three public benchmark datasets demonstrate the effectiveness and superiority of the proposed model over the state-of-the-art methods.

Originele taal-2Engels
Pagina's (van-tot)119-134
Aantal pagina's16
TijdschriftPattern Recognition
Volume92
DOI's
StatusGepubliceerd - 1 aug. 2019

Financiering

This work is supported by the National Natural Science Foundation of China under Grant no. 61773301 , and by the Fundamental Research Funds for the Central Universities under Grant no. JBZ170401 .

Vingerafdruk

Duik in de onderzoeksthema's van 'Salient object detection employing a local tree-structured low-rank representation and foreground consistency'. Samen vormen ze een unieke vingerafdruk.

Citeer dit