Roots of bivariate polynomial systems via determinantal representations

Bor Plestenjak, M.E. Hochstenbach

Onderzoeksoutput: Boek/rapportRapportAcademic

11 Downloads (Pure)

Samenvatting

We give two determinantal representations for a bivariate polynomial. They may be used to compute the zeros of a system of two of these polynomials via the eigenvalues of a two-parameter eigenvalue problem. The first determinantal representation is suitable for polynomials with scalar or matrix coefficients, and consists of matrices with asymptotic order $n^2/4$, where $n$ is the degree of the polynomial. The second representation is useful for scalar polynomials and has asymptotic order $n^2/6$. The resulting method to compute the roots of a system of two bivariate polynomials is competitive with some existing methods for polynomials up to degree 10, as well as for polynomials with a small number of terms. Keywords: System of bivariate polynomial equations, determinantal representation, two-parameter eigenvalue problem, polynomial multiparameter eigenvalue problem
Originele taal-2Engels
Uitgeverijs.n.
Aantal pagina's22
StatusGepubliceerd - 2015

Publicatie series

NaamarXiv
Volume1506.02291 [math.NA]

Vingerafdruk

Duik in de onderzoeksthema's van 'Roots of bivariate polynomial systems via determinantal representations'. Samen vormen ze een unieke vingerafdruk.

Citeer dit