Robustness of delta hedging for path-dependent options in local volatility models

A. Schied, M.A. Stadje

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    10 Citaten (Scopus)

    Samenvatting

    We consider the performance of the delta hedging strategy obtained from a local volatility model when using as input the physical prices instead of the model price process. This hedging strategy is called robust if it yields a superhedge as soon as the local volatility model overestimates the market volatility. We show that robustness holds for a standard Black-Scholes model whenever we hedge a path-dependent derivative with a convex payoff function. In a genuine local volatility model the situation is shown to be less stable: robustness can break down for many relevant convex payoffs including average-strike Asian options, lookback puts, floating-strike forward starts, and their aggregated cliquets. Furthermore, we prove that a sufficient condition for the robustness in every local volatility model is the directional convexity of the payoff function.
    Originele taal-2Engels
    Pagina's (van-tot)865-879
    TijdschriftJournal of Applied Probability
    Volume44
    Nummer van het tijdschrift4
    DOI's
    StatusGepubliceerd - 2007

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Robustness of delta hedging for path-dependent options in local volatility models'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit