Robust importance-weighted cross-validation under sample selection bias

Wouter M. Kouw, Jesse H. Krijthe, Marco Loog

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

4 Citaten (Scopus)
74 Downloads (Pure)

Samenvatting

Cross-validation under sample selection bias can, in principle, be done by importance-weighting the empirical risk. However, the importance-weighted risk estimator produces suboptimal hyperparameter estimates in problem settings where large weights arise with high probability. We study its sampling variance as a function of the training data distribution and introduce a control variate to increase its robustness to problematically large weights.
Originele taal-2Engels
Titel2019 IEEE 29th International Workshop on Machine Learning for Signal Processing, MLSP 2019
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Aantal pagina's6
ISBN van elektronische versie978-1-7281-0824-7
DOI's
StatusGepubliceerd - 5 dec. 2019
Evenement29th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2019 - University of Pittsburgh, Pittsburgh, Verenigde Staten van Amerika
Duur: 13 okt. 201916 dec. 2019
Congresnummer: 29
https://www.ieeemlsp.cc/

Congres

Congres29th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2019
Verkorte titelMLSP 2019
Land/RegioVerenigde Staten van Amerika
StadPittsburgh
Periode13/10/1916/12/19
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Robust importance-weighted cross-validation under sample selection bias'. Samen vormen ze een unieke vingerafdruk.

Citeer dit