Samenvatting
Cross-validation under sample selection bias can, in principle, be done by importance-weighting the empirical risk. However, the importance-weighted risk estimator produces suboptimal hyperparameter estimates in problem settings where large weights arise with high probability. We study its sampling variance as a function of the training data distribution and introduce a control variate to increase its robustness to problematically large weights.
Originele taal-2 | Engels |
---|---|
Titel | 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing, MLSP 2019 |
Plaats van productie | Piscataway |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Aantal pagina's | 6 |
ISBN van elektronische versie | 978-1-7281-0824-7 |
DOI's | |
Status | Gepubliceerd - 5 dec. 2019 |
Evenement | 29th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2019 - University of Pittsburgh, Pittsburgh, Verenigde Staten van Amerika Duur: 13 okt. 2019 → 16 dec. 2019 Congresnummer: 29 https://www.ieeemlsp.cc/ |
Congres
Congres | 29th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2019 |
---|---|
Verkorte titel | MLSP 2019 |
Land/Regio | Verenigde Staten van Amerika |
Stad | Pittsburgh |
Periode | 13/10/19 → 16/12/19 |
Internet adres |