Robust discomfort detection for infants using an unsupervised roll estimation

Cheng Li, Arash Pourtaherian, W.E. Tjon A. Ten, Peter H.N. de With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Downloads (Pure)

Samenvatting

Discomfort detection for infants is essential in the healthcare domain, since infants lack the ability to verbalize their pain and discomfort. In this paper, we propose a robust and generic discomfort detection for infants by exploiting a novel and efficient initialization method for facial landmark localization, using an unsupervised rollangle estimation. The roll-angle estimation is achieved by fitting a 1st-order B-spline model to facial features obtained from the scaled-normalized Laplacian of the Gaussian operator. The proposed method can be adopted both for daylight and infrared-light images and supports real-time implementation. Experimental results have shown that the proposed method improves the performance of discomfort detection by 6.0% and 4.2% for the AUC and AP using daylight images, together with 6.9% and 3.8% for infrared-light images, respectively.

Originele taal-2Engels
TitelMedical Imaging 2019
SubtitelImage Processing
RedacteurenBennett A. Landman, Elsa D. Angelini
Plaats van productieBellingham
UitgeverijSPIE
ISBN van elektronische versie9781510625457
DOI's
StatusGepubliceerd - 1 jan. 2019
EvenementSPIE Medical Imaging 2019 - San Diego, Verenigde Staten van Amerika
Duur: 16 feb. 201921 feb. 2019

Publicatie series

NaamProceedings of SPIE
Volume10949

Congres

CongresSPIE Medical Imaging 2019
Land/RegioVerenigde Staten van Amerika
StadSan Diego
Periode16/02/1921/02/19

Vingerafdruk

Duik in de onderzoeksthema's van 'Robust discomfort detection for infants using an unsupervised roll estimation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit