Roadmap for Unconventional Computing with Nanotechnology

Giovanni Finocchio, Supriyo Bandyopadhyay, Peng Lin, Gang Pan, Riccardo Tomasello, Christos Panagopoulos, Mario Carpentieri, Vito Puliafito, Johan Åkerman, Hiroki Takesue, Amit Ranjan Trivedi, Saibal Mukhopadhyay, Kaushik Roy, Vinod K. Sangwan, Mark C. Hersam, Anna Giordano, Huynsoo Yang, Julie Grollier, Kerem Camsari, Peter McmahonSupriyo Datta, Jean Anne Incorvia, Joseph Friedman, Sorin Cotofana, Florin Ciubotaru, Andrii Chumak, Azad J. Naeemi, Brajesh Kumar Kaushik, Yao Zhu, Kang Wang, Belita Koiller, Gabriel Aguilar, Guilherme Temporão, Kremena Makasheva, Aida Todri-Sanial, Jennifer Hasler, William Levy, Vwani Roychowdhury, Samiran Ganguly, Avik Ghosh, Davi Rodriquez, Satoshi Sunada, Karin Evershor-Sitte, Amit Lal, Shubham Jadhav, Massimiliano Di Ventra, Yuriy Pershin, Kosuke Tatsumura, Hayato Goto

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademic

200 Downloads (Pure)

Samenvatting

In the Beyond Moore Law era, with increasing edge intelligence, domain-specific computing embracing unconventional approaches will become increasingly prevalent. At the same time, the adoption of a wide variety of nanotechnologies will offer benefits in energy cost, computational speed, reduced footprint, cyber-resilience and processing prowess. The time is ripe to lay out a roadmap for unconventional computing with nanotechnologies to guide future research and this collection aims to fulfill that need. The authors provide a comprehensive roadmap for neuromorphic computing with electron spins, memristive devices, two-dimensional nanomaterials, nanomagnets and assorted dynamical systems. They also address other paradigms such as Ising machines, Bayesian inference engines, probabilistic computing with p-bits, processing in memory, quantum memories and algorithms, computing with skyrmions and spin waves, and brain inspired computing for incremental learning and solving problems in severely resource constrained environments. All of these approaches have advantages over conventional Boolean computing predicated on the von-Neumann architecture. With the computational need for artificial intelligence growing at a rate 50x faster than Moore law for electronics, more unconventional approaches to computing and signal processing will appear on the horizon and this roadmap will aid in identifying future needs and challenges.
Originele taal-2Engels
Artikelnummer2301.06727
Aantal pagina's88
TijdschriftarXiv
Volume2023
StatusGepubliceerd - 17 jan. 2023

Vingerafdruk

Duik in de onderzoeksthema's van 'Roadmap for Unconventional Computing with Nanotechnology'. Samen vormen ze een unieke vingerafdruk.

Citeer dit