Riemann-Finsler geometry and its applications to diffusion magnetic resonance imaging

L.M.J. Florack, A. Fuster, T.C.J. Dela Haije

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademic

270 Downloads (Pure)

Samenvatting

Riemannian geometry has become a popular mathematical framework for the analysis of diffusion tensor images (DTI) in diffusion weighted magnetic resonance imaging (DWMRI). If one declines from the a priori constraint to model local anisotropic diffusion in terms of a 6-degrees-of-freedom rank-2 DTI tensor, then Riemann-Finsler geometry appears to be the natural extension. As such it provides an interesting alternative to the Riemannian rationale in the context of the various high angular resolution diffusion imaging (HARDI) schemes proposed in the literature. The main advantages of the proposed Riemann-Finsler paradigm are its manifest incorporation of the DTI model as a limiting case via a "correspondence principle" (operationalized in terms of a vanishing Cartan tensor), and its direct connection to the physics of DWMRI expressed by the (appropriately generalized) Stejskal-Tanner equation and Bloch-Torrey equations furnished with a diffusion term.
Originele taal-2Engels
TitelProceedings of the International Biomedical and Astronomical Signal Processing (BASP) Frontiers workshop
Pagina's61-
StatusGepubliceerd - 2013
Evenementconference; Biomedical and Astronomical Signal Processing (BASP) Frontiers workshop 2013 -
Duur: 1 jan. 2013 → …

Congres

Congresconference; Biomedical and Astronomical Signal Processing (BASP) Frontiers workshop 2013
Periode1/01/13 → …
AnderBiomedical and Astronomical Signal Processing (BASP) Frontiers workshop 2013

Vingerafdruk

Duik in de onderzoeksthema's van 'Riemann-Finsler geometry and its applications to diffusion magnetic resonance imaging'. Samen vormen ze een unieke vingerafdruk.

Citeer dit