Revisiting motion-based respiration measurement from videos

Qi Zhan, Jingjing Hu, Zitong Yu, Xiaobai Li, Wenjin Wang

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

10 Citaten (Scopus)

Samenvatting

Video-based motion analysis gave rise to contactless respiration rate monitoring that measures subtle respiratory movement from a human chest or belly. In this paper, we revisit this technology via a large video benchmark that includes six categories of practical challenges. We analyze two video properties (i.e. pixel intensity variation and pixel movement) that are essential for respiratory motion analysis and various signal extraction approaches (i.e. from conventional to recent Convolutional Neural Network (CNN)-based methods). We find that pixel movement can better quantify respiratory motion than pixel intensity variation in various conditions. We also conclude that the simple conventional approach (e.g. Zerophase Component Analysis) can achieve better performance than CNN that uses data training to define the extraction of respiration signal, which thus raises a more general question whether CNN can improve video-based physiological signal measurement.

Originele taal-2Engels
Titel42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
SubtitelEnabling Innovative Technologies for Global Healthcare, EMBC 2020
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's5909-5912
Aantal pagina's4
ISBN van elektronische versie9781728119908
DOI's
StatusGepubliceerd - jul. 2020
Evenement42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duur: 20 jul. 202024 jul. 2020
Congresnummer: 42

Congres

Congres42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Verkorte titelEMBC 2020
Land/RegioCanada
StadMontreal
Periode20/07/2024/07/20

Vingerafdruk

Duik in de onderzoeksthema's van 'Revisiting motion-based respiration measurement from videos'. Samen vormen ze een unieke vingerafdruk.

Citeer dit