Reviewing inference performance of state-of-the-art deep learning frameworks

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

18 Citaten (Scopus)

Samenvatting

Deep learning models have replaced conventional methods for machine learning tasks. Efficient inference on edge devices with limited resources is key for broader deployment. In this work, we focus on the tool selection challenge for inference deployment. We present an extensive evaluation of the inference performance of deep learning software tools using state-of-the-art CNN architectures for multiple hardware platforms. We benchmark these hardware-software pairs for a broad range of network architectures, inference batch sizes, and floating-point precision, focusing on latency and throughput. Our results reveal interesting combinations for optimal tool selection, resulting in different optima when considering minimum latency and maximum throughput.

Originele taal-2Engels
TitelSCOPES '20: Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems
RedacteurenSander Stuijk
UitgeverijAssociation for Computing Machinery, Inc
Pagina's48-53
Aantal pagina's6
ISBN van elektronische versie9781450371315
DOI's
StatusGepubliceerd - 25 mei 2020
Evenement23rd International Workshop on Software and Compilers for Embedded Systems (SCOPES 2020) - St. Goar, Duitsland
Duur: 25 mei 202026 mei 2020

Congres

Congres23rd International Workshop on Software and Compilers for Embedded Systems (SCOPES 2020)
Land/RegioDuitsland
StadSt. Goar
Periode25/05/2026/05/20

Vingerafdruk

Duik in de onderzoeksthema's van 'Reviewing inference performance of state-of-the-art deep learning frameworks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit