TY - JOUR
T1 - Review of machine learning solutions for eating disorders
AU - Ghosh, Sreejita
AU - Burger, Pia
AU - Simeunovic-Ostojic, Mladena
AU - Maas, Joyce
AU - Petković, Milan
PY - 2024/9
Y1 - 2024/9
N2 - Background: Eating Disorders (EDs) are one of the most complex psychiatric disorders, with significant impairment of psychological and physical health, and psychosocial functioning, and are associated with low rates of early detection, low recovery and high relapse rates. This underscores the need for better diagnostic and treatment methods. Objective: This narrative review explores current Machine Learning (ML) and Artificial Intelligence (AI) applications in the domain of EDs, with a specific emphasis on clinical management in treatment settings. The primary objective are to (i) decrease the knowledge gap between ED researchers and AI-practitioners, by presenting the current state-of-the-art AI applications (including models for causality) in different ED use-cases; (ii) identify limitations of these existing AI interventions and how to address them. Results: AI/ML methods have been applied in different ED use-cases, including ED risk factor identification and incidence prediction (including the analysis of social media content in the general population), diagnosis, monitoring patients and treatment response and prognosis in clinical populations. A comparative analysis of AI-techniques deployed in these use-cases have been performed, considering factors such as complexity, flexibility, functionality, explainability and adaptability to healthcare constraints. Conclusion: Multiple restrictions have been identified in the existing methods in ML and Causality in terms of achieving actionable healthcare for ED, like lack of good quality and quantity of data for models to train on, while requiring models to be flexible, high-performing, yet being explainable and producing counterfactual explanations, for ensuring the fairness and trustworthiness of its decisions. We conclude that to overcome these limitations and for future AI research and application in clinical management of ED, (i) careful considerations are required with regards to AI-model selection, and (ii) joint efforts from ED researcher and patient community are essential in building better quality and quantity of dedicated ED datasets and secure AI-solution framework.
AB - Background: Eating Disorders (EDs) are one of the most complex psychiatric disorders, with significant impairment of psychological and physical health, and psychosocial functioning, and are associated with low rates of early detection, low recovery and high relapse rates. This underscores the need for better diagnostic and treatment methods. Objective: This narrative review explores current Machine Learning (ML) and Artificial Intelligence (AI) applications in the domain of EDs, with a specific emphasis on clinical management in treatment settings. The primary objective are to (i) decrease the knowledge gap between ED researchers and AI-practitioners, by presenting the current state-of-the-art AI applications (including models for causality) in different ED use-cases; (ii) identify limitations of these existing AI interventions and how to address them. Results: AI/ML methods have been applied in different ED use-cases, including ED risk factor identification and incidence prediction (including the analysis of social media content in the general population), diagnosis, monitoring patients and treatment response and prognosis in clinical populations. A comparative analysis of AI-techniques deployed in these use-cases have been performed, considering factors such as complexity, flexibility, functionality, explainability and adaptability to healthcare constraints. Conclusion: Multiple restrictions have been identified in the existing methods in ML and Causality in terms of achieving actionable healthcare for ED, like lack of good quality and quantity of data for models to train on, while requiring models to be flexible, high-performing, yet being explainable and producing counterfactual explanations, for ensuring the fairness and trustworthiness of its decisions. We conclude that to overcome these limitations and for future AI research and application in clinical management of ED, (i) careful considerations are required with regards to AI-model selection, and (ii) joint efforts from ED researcher and patient community are essential in building better quality and quantity of dedicated ED datasets and secure AI-solution framework.
KW - Actionable healthcare
KW - Causality
KW - Eating disorders
KW - Machine learning
UR - http://www.scopus.com/inward/record.url?scp=85196783272&partnerID=8YFLogxK
U2 - 10.1016/j.ijmedinf.2024.105526
DO - 10.1016/j.ijmedinf.2024.105526
M3 - Review article
C2 - 38935998
AN - SCOPUS:85196783272
SN - 1386-5056
VL - 189
JO - International Journal of Medical Informatics
JF - International Journal of Medical Informatics
M1 - 105526
ER -