Reprint of: Mean flow boundary layer effects of hydrodynamic instability of impedance wall

S.W. Rienstra, M. Darau

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

5 Citaten (Scopus)

Samenvatting

The Ingard-Myers condition, modelling the effect of an impedance wall under a mean flow by assuming a vanishing boundary layer, is known to lead to an ill-posed problem in time-domain. By analysing the stability of a mean flow, uniform except for a linear boundary layer of thickness h, in the incompressible limit, we show that the flow is absolutely unstable for h smaller than a critical hc and convectively unstable or stable otherwise. This critical hc is by nature independent of wave length or frequency and is a property of liner and mean flow only. An analytical approximation of hc is given for a mass-spring-damper liner. For an aeronautically relevant example, hc is shown to be extremely small, which explains why this instability has never been observed in industrial practice. A systematically regularised boundary condition, to replace the Ingard-Myers condition, is proposed that retains the effects of a finite h, such that the stability of the approximate problem correctly follows the stability of the real problem.
Originele taal-2Engels
TitelIUTAM Symposium on Computational Aero-Acoustics for Aircraft Noise Prediction (Southampton, UK, March 29-31, 2010)
RedacteurenR.J. Astley, G. Gabard
Pagina's124-132
DOI's
StatusGepubliceerd - 2010

Publicatie series

NaamProcedia IUTAM
Volume1
ISSN van geprinte versie2210-9838

Vingerafdruk

Duik in de onderzoeksthema's van 'Reprint of: Mean flow boundary layer effects of hydrodynamic instability of impedance wall'. Samen vormen ze een unieke vingerafdruk.

Citeer dit