Reparameterization gradient message passing

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

4 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

In this paper we consider efficient message passing based inference in a factor graph representation of a probabilistic model. Current message passing methods, such as belief propagation, variational message passing or expectation propagation, rely on analytically pre-computed message update rules. In practical models, it is often not feasible to analytically derive all update rules for all factors in the graph and as a result, efficient message passing-based inference cannot proceed. In related research on (non-message passing-based) inference, a “reparameterization trick” has lead to a considerable extension of the class of models for which automated inference is possible. In this paper, we introduce Reparameterization Gradient Message Passing (RGMP), which is a new message passing method based on the reparameterization gradient. In most models, the large majority of messages can be analytically derived and we resort to RGMP only when necessary. We will argue that this kind of hybrid message passing leads naturally to low-variance gradients.
Originele taal-2Engels
TitelEUSIPCO 2019 - 27th European Signal Processing Conference
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Aantal pagina's5
ISBN van elektronische versie9789082797039
DOI's
StatusGepubliceerd - sep. 2019
Evenement27th European Signal Processing Conference, EUSIPCO 2019 - A Coruña, Spanje
Duur: 2 sep. 20196 sep. 2019
Congresnummer: 27
http://www.eusipco.org

Congres

Congres27th European Signal Processing Conference, EUSIPCO 2019
Verkorte titelEUSIPCO 2019
Land/RegioSpanje
StadA Coruña
Periode2/09/196/09/19
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Reparameterization gradient message passing'. Samen vormen ze een unieke vingerafdruk.

Citeer dit