Repairing event logs using timed process models

A. Rogge-Solti, R.S. Mans, W.M.P. Aalst, van der, M.H. Weske

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

16 Citaten (Scopus)


Process mining aims to infer meaningful insights from process-related data and attracted the attention of practitioners, tool-vendors, and researchers in recent years. Traditionally, event logs are assumed to describe the as-is situation. But this is not necessarily the case in environments where logging may be compromised due to manual logging. For example, hospital staff may need to manually enter information regarding the patient’s treatment. As a result, events or timestamps may be missing or incorrect. In this work, we make use of process knowledge captured in process models, and provide a method to repair missing events in the logs. This way, we facilitate analysis of incomplete logs. We realize the repair by combining stochastic Petri nets, alignments, and Bayesian networks. Keywords: process mining; missing data; stochastic Petri nets; Bayesian networks
Originele taal-2Engels
TitelOn the Move to Meaningful Internet Systems: OTM 2013 Workshops : Confederated International Workshops: OTM Academy, OTM Industry Case Studies Program, ACM, EI2N, ISDE, META4eS, ORM, SeDeS, SINCOM, SMS, and SOMOCO 2013, Graz, Austria, September 9 - 13, 2013, Proceedings
RedacteurenY.T. Demey, H. Panetto
Plaats van productieBerlin
ISBN van geprinte versie978-3-642-41032-1
StatusGepubliceerd - 2013

Publicatie series

NaamLecture Notes in Computer Science
ISSN van geprinte versie0302-9743

Vingerafdruk Duik in de onderzoeksthema's van 'Repairing event logs using timed process models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit