Rényi entropies of aperiodic dynamical systems

F. Takens, E.A. Verbitskiy

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

8 Citaten (Scopus)

Samenvatting

In this paper we continue the study of R6nyi entropies of measurepreserving transformations started in [22]. We have established there that for ergodic transformations with positive entropy, the R6nyi entropies of order q, q E R, are equal to either plus infinity (q <1), or to the measure-theoretic (Kolmogorov-Sinai) entropy (q > 1). The answer for non-ergodic transformations is different: the R~nyi entropies of order q > 1 are equal to the essential infimum of the measure-theoretic entropies of measures forming the decomposition into ergodic components.Thus, it is possible that the R6nyi entropies of order q > 1 are strictly smaller than the measure-theoretic entropy, which is the average value of entropies of ergodic components. This result is a bit surprising: the R~nyi entropies are metric invariants, which axe sensitive to ergodicity. The proof of the described result is based on the construction of partitions with independent iterates. However, these partitions are obtained in different ways depending on q: for q > 1 we use a version of the well-known Sinai theorem on Bernoulli factors for the non-ergodic transformations; for q <1 we use the notion of collections of independent sets in Rokhlin-Halmos towers and their properties.
Originele taal-2Engels
Pagina's (van-tot)279-302
TijdschriftIsrael Journal of Mathematics
Volume127
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 2002

Vingerafdruk

Duik in de onderzoeksthema's van 'Rényi entropies of aperiodic dynamical systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit