Regularized deconvolution-based approaches for estimating room occupancies

A. Ebadat, G. Bottegal, D. Varagnolo, B.G. Wahlberg, K.H. Johansson

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

29 Citaten (Scopus)
7 Downloads (Pure)


We address the problem of estimating the number of people in a room using information available in standard HVAC systems. We propose an estimation scheme based on two phases. In the first phase, we assume the availability of pilot data and identify a model for the dynamic relations occurring between occupancy levels, concentration and room temperature. In the second phase, we make use of the identified model to formulate the occupancy estimation task as a deconvolution problem. In particular, we aim at obtaining an estimated occupancy pattern by trading off between adherence to the current measurements and regularity of the pattern. To achieve this goal, we employ a special instance of the so-called fused lasso estimator, which promotes piecewise constant estimates by including an norm-dependent term in the associated cost function. We extend the proposed estimator to include different sources of information, such as actuation of the ventilation system and door opening/closing events. We also provide conditions under which the occupancy estimator provides correct estimates within a guaranteed probability. We test the estimator running experiments on a real testbed, in order to compare it with other occupancy estimation techniques and assess the value of having additional information sources.
Originele taal-2Engels
Pagina's (van-tot)1157-1168
Aantal pagina's12
TijdschriftIEEE Transactions on Automation Science and Engineering
Nummer van het tijdschrift4
StatusGepubliceerd - 1 okt 2015
Extern gepubliceerdJa


Duik in de onderzoeksthema's van 'Regularized deconvolution-based approaches for estimating room occupancies'. Samen vormen ze een unieke vingerafdruk.

Citeer dit